ONSET OF CONVECTION REGIMES WITH DOUBLE PERIOD

IN A PERIODIC FIELD OF EXTERNAL FORCES
G. S. Markman and V. I. Yudovich

UDC 518.5:536.252

Abstract

We investigate the onset of secondary convective flows in the Rayleigh problem (in a horizontal layer of a viscous incompressible liquid with free boundaries) In the presence of a parameter that varies with time and has a period T, namely the temperature gradient or the intensity of the gravitational field.

The dependence of the critical Rayleigh number on the frequency of the parameter modulation for T periodic solutions was investigated in [1].

Solutions were considered with double the period and with half the frequency (the so-called halfinteger solution). A continuous-fraction algorithm [2,3] was used to obtain the critical Rayleigh numbers at different values of the modulation frequency. It turned out that, in an appreciable frequency range, it is precisely the solutions with period 2 T which are responsible for the appearance of instability, since they correspond to smaller critical values of the Rayleigh number than the T-periodic solutions.

It was established with the ald of the Lyapunov-Schmidt method that at Rayleigh-number values larger than crititical (or close to it) there arises one (accurate to a shift in a horizontal direction) secondary $2 \mathrm{~T}-$ periodic flow, which is stable against perturbations having the same periodicity and parity as this flow.

1. We consider a flat horizontal layer of an incompressible viscous liquid in a gravitational field that varies periodically with time. The temperature gradient is constant, the mass force is vertical and varies in time in accordance with the law

$$
\begin{equation*}
f=g(1+\eta \sin \Omega t), \quad g, \eta \eta=\mathrm{const} \tag{1.1}
\end{equation*}
$$

The equations of nonstationary convection under these conditions admit : a solution corresponding to relative equilibrium of the liquid in a coordinate system that executes vertical oscillations with acceleration (1.1); the distribution of the temperature is in this case stationary in time and is linear in z.

The dimensionless equations of small perturbations of the equilibrium in the indicated coordinate system are of the form

$$
\begin{gather*}
\frac{1}{\sqrt{p}} \frac{\partial \Delta \psi}{\partial t}-\Delta \Delta \psi=R(1+\eta \sin \omega t) \frac{\partial \theta}{\partial x}-\frac{1}{p}\left(\frac{\partial \psi}{\partial x} \frac{\partial \Delta \psi}{\partial z}-\frac{\partial \psi}{\partial z} \frac{\partial \Delta \psi}{\partial x}\right) \\
\sqrt{p} \frac{\partial \theta}{\partial t}-\Delta \theta=R \frac{\partial \psi}{\partial x}-\left(\frac{\partial \psi}{\partial z} \frac{\partial \theta}{\partial x}-\frac{\partial \psi}{\partial x} \frac{\partial \theta}{\partial z}\right) \tag{1.2}\\
p=\frac{v}{\chi}, \quad R^{2}=\mathrm{Ra}=\frac{g 3 a h^{3}}{v \chi}, \quad \omega=\frac{\Omega h^{2}}{\sqrt{v \chi}}
\end{gather*}
$$

Here ψ is the stream function, θ is the temperature, p and Ra are the Prandtl and Rayleigh numbers, respectively, and ω is the dimensionless modulation frequency.

Linearizing the system of equations (1.2) in the vicinity of the equilibrium solution, we obtain

[^0][^1]

Fig. 1

$$
\begin{gathered}
\frac{1}{\sqrt{p}} \frac{\partial \Delta \psi}{\partial t}-\Delta \Delta \psi=R(1+\eta \sin \omega t) \frac{\partial \theta}{\partial x} \\
\sqrt{\bar{p}} \frac{\partial \theta}{\partial t}-\Delta \theta=R \frac{\partial \psi}{\partial x}
\end{gathered}
$$

We seek the solution of the system (1.3) in the form

$$
\begin{equation*}
\psi=\psi(t) e^{i(\alpha x+\pi z)}, \quad \theta=\theta(t) e^{i(\alpha x+\pi z)} \tag{1.4}
\end{equation*}
$$

As a result we arrive at one equation* with respect to θ :

$$
\begin{gather*}
\theta^{\prime \prime}+k^{2} q \theta^{\prime}+\left[k^{4}-\frac{\alpha^{2}}{k^{2}} \operatorname{Ra}(1+\eta \sin \omega t)\right] \theta=0 \tag{1.5}\\
q=(1+p) p^{-1 / 2}, \quad k^{2}=\alpha^{2}+\pi^{2}, \theta^{\prime}=d \theta / d t
\end{gather*}
$$

the solution of which we seek in the form of a series

$$
\begin{equation*}
\theta=\sum_{n=-\infty}^{\infty} c_{n} \exp (\text { in } \omega t / 2) \tag{1.6}
\end{equation*}
$$

It is seen from (1.5) that the coefficients c_{n} satisfy an infinite system of linear algebraic equations

$$
\begin{align*}
& a_{n} c_{n}+c_{n-2}-c_{n+2}=0 \quad(n=0, \pm 1, \pm 2, \ldots) \\
& a_{n}=\frac{2 k^{4} q n \omega}{\alpha^{2} \eta \mathrm{Ra}}-i \frac{2 k^{4}}{\alpha^{2} \eta \mathrm{Ra}}\left(k^{4}-\frac{\alpha^{2} \mathrm{Ra}}{k^{2}}-n^{2} \omega^{2}\right) \tag{1.7}
\end{align*}
$$

We seek for the system (1.7) solutions such that $\left|c_{n}\right| \rightarrow 0$ as $|n| \rightarrow \infty$. The system (1.7) breaks up into two independent systems of equations for the coefficients c_{n} with even and odd numbers, respectively. The system for the coefficients with odd numbers corresponds to the previously considered T-periodic solutions [1].

We note that in the case of small amplitudes ($\eta \leq 1$) Eq. (1.5) has only T-periodic solutions [5]. This statement is the analog of the so-called "principle of interchange of stability" for stationary problems.

The Fourier coefficients for the 2T-periodic proper solution (which is not T-periodic) is obtained from the system

$$
\begin{equation*}
a_{2 n+1} c_{2 n+1}+c_{2 n-1}-c_{2 n+3}=0 \quad(n=0, \pm 1, \pm 2, \ldots) \tag{1.8}
\end{equation*}
$$

With the aid of the substitution

$$
\begin{equation*}
c_{2 n+1}=d_{n} \tag{1.9}
\end{equation*}
$$

we reduce the system to the form

$$
\begin{equation*}
a_{2 n+1}+\rho_{n}^{-1}=\rho_{n+1}, \quad \rho_{n}=d_{n} / d_{n-1} \tag{1.10}
\end{equation*}
$$

From this we derive two representations for ρ_{n}

$$
\begin{equation*}
\rho_{n}=-\frac{1}{a_{2 n+1}}+\frac{1}{a_{2 n+3}}+\ldots, \quad \rho_{n}=a_{2 n-1}+\frac{1}{a_{2 n-3}}+\frac{1}{a_{2 n-5}} \ldots \tag{1.11}
\end{equation*}
$$

The condition that these two expressions for ρ_{n} must coincide leads to a transcendental equation for the determination of Ra

$$
\begin{equation*}
a_{-1}+\frac{1}{a_{-3}+\frac{1}{a_{-5}}}+\frac{1}{a_{-7}}+\ldots 5 \frac{1}{a_{1}+\frac{1}{a_{3}}}+\frac{1}{a_{5}}+\ldots=0 \tag{1.12}
\end{equation*}
$$

The dependence of the Rayleigh number Ra on the wave number α and on the modulation frequency ω was calculated with the "ODRA-1204" computer.

Figure 1 shows the neutral curve on the (Ra, α) plane. (The remaining parameters have the following values: $\omega=5, \eta=10, p=1$.) The instability zone lies above the neutral curve.

[^2]The most dangerous is the perturbation with the wave number α_{*} corresponding to the minimum value of $\mathrm{Ra}{ }_{*}$ on the neutral curve. With increasing frequency ω, the critical wave number α_{*} also increases.

We note that unlike the case of T -periodic solutions, the minimum value of Ra_{*} is reached at all values of ω on the first lobe.

The critlcal value of the Rayleigh number also increases with increasing ω. Figures 2 a and 2 b show the plots of Ra_{*} and α_{*} against ω at fixed values $\eta=10$ and $\mathrm{p}=1$.

A comparison of these plots with the corresponding results of [1] shows that in a considerable range of frequencies the $2 T$-periodic solutions correspond to smaller Rayleigh numbers, and the T-periodic solutions occur first only at very small or very large frequencies,
2. To investigate $2 T$-periodic flows that appear after the loss of stability with respect to equilibrlum, we use the Lyapunov-Schmidt method [6]. We assume that the critical value of the Rayleigh number Ra* is simple. We note that the simplicity of $\mathrm{Ra} *$ will subsequently be confirmed by the calculation. The uniqueness of the proper solution (1.6) follows here from the unique solvability of (1.7), and the absence of attached vectors is proved by a numerical verification of the condition of Lemma 1.5 of [3].

We write down the system (1.2) in the form of an operator equation in the space of pairs of functions $\mathrm{w}=(\psi, \theta)$ that are periodic in time with a period 2 T

$$
\begin{gather*}
A w=R B(t) w+L(w, w) \tag{2.1}\\
A w=\left(\begin{array}{cc}
\frac{1}{\sqrt{p}} \frac{\partial \Delta}{\partial t}-\Delta \Delta & 0 \\
0 & \sqrt{p} \frac{\partial}{\partial t}-\Delta
\end{array}\right)\binom{\psi}{0}, \quad B w=\left(\begin{array}{cc}
0 & \Phi \frac{\partial}{\partial x} \\
\frac{\partial}{\partial x} & 0
\end{array}\right)\binom{\psi}{\theta} \\
L\left(w_{1}, w_{2}\right)=\binom{\frac{1}{p}\left(\frac{\partial \psi_{1}}{\partial x} \frac{\partial \Delta \psi_{2}}{\partial z}-\frac{\partial \psi_{1}}{\partial z} \frac{\partial \Delta \phi_{2}}{\partial x}\right)}{\frac{\partial \psi_{1}}{\partial z} \frac{\partial \theta_{2}}{\partial x}-\frac{\partial \psi_{1}}{\partial x} \frac{\partial \theta_{2}}{\partial z}}, \quad \Phi=1+\eta \sin \omega t
\end{gather*}
$$

We use $\varphi=\left(\psi_{0}, \theta_{0}\right)$ to denote the solution of the linearized problem (1.3)

$$
\begin{equation*}
A w=R B(t) w \tag{2.2}
\end{equation*}
$$

corresponding to the critical value of the parameter $\mathrm{R}_{*}=\mathrm{Ra}_{*}{ }^{1 / 2}$.
Using the usual Lyapunov-Schmidt scheme, we can deduce that if the constant γ is real and differs from zero, then there exists one nontrivial solution of the problem (1.3) (accurate to within a shift along $\mathrm{x}[7])$

$$
\begin{equation*}
w=\gamma \varepsilon \varphi+\gamma^{2} \varepsilon^{2} w_{1}+O\left(\varepsilon^{3}\right), \quad \varepsilon=\sqrt{R-R_{*}} \tag{2.3}
\end{equation*}
$$

The constant γ is determined from the formula

$$
\begin{equation*}
\gamma^{2}=\left[R_{*} \int_{0}^{2 T}\left(L^{\circ}\left(\varphi, w_{1}\right), w_{*}\right)_{E} d t\right]^{-1} \tag{2.4}
\end{equation*}
$$

Fig. 2

Here w_{1} is the solution of the inhomogeneous problem

$$
\begin{equation*}
A w-R_{*} B(t) w=L(\varphi, \varphi) \tag{2.5}
\end{equation*}
$$

w_{*} is the elgenvector of the conjugate equation

$$
\begin{equation*}
A w-R_{*} B^{*}(t) w=0, \quad R^{*} \int_{0}^{2 T}\left(B \varphi, w_{*}\right)_{E} d t=1 \tag{2.6}
\end{equation*}
$$

The operator L^{0} and the scalar product in (2.4) are defined as follows:

$$
\begin{gather*}
L^{0}\left(u_{1}, u_{2}\right)=L\left(u_{1}, u_{2}\right)+L\left(u_{2}, u_{1}\right) \tag{2.7}\\
\left(u_{1}, u_{2}\right)_{E}=\left(\left(\psi_{1}, \theta_{1}\right),\left(\psi_{2}, \theta_{2}\right)\right)_{E}=\left(\psi_{1}, \psi_{2}\right)_{L_{2}}+\left(\theta_{1}, \theta_{2}\right)_{L_{3}}
\end{gather*}
$$

Investigating the variational equation

$$
\begin{equation*}
A u-R_{*} B u-\varepsilon \gamma L^{\circ}(\varphi, u)+\varepsilon^{2} \gamma^{2} L^{\circ}\left(w_{1}, u_{6}\right)+\ldots=-\sigma u \tag{2.8}
\end{equation*}
$$

we can show, just as in [8], that the solution (2.3) is stable or unstable, depending on whether the eigenvalue σ_{ε} of Eq. (2.8), resulting from $\sigma=0$, is in the left or in the right half-plane.

It is easy to deduce that

$$
\begin{equation*}
\sigma_{z}=\zeta\left(R-R_{*}\right) \varepsilon^{2}+O\left(\varepsilon^{3}\right), \quad \zeta=\left[R_{*} \int_{0}^{2 T}\left(\varphi, w_{*}\right)_{E} d t\right]^{-1} \tag{2.9}
\end{equation*}
$$

Thus, the flow (2.3) is stable in the linear approximation if $\zeta\left(R-R_{*}\right)>0$, and is unstable in the opposite case. From the results of [9] it follows that a nonlinear stability also takes place (in a class of perturbations having the same periodicity in x).

The constant γ was calculated in the following manner. We sought the solution of the system (1.3) in the form

$$
\begin{equation*}
\psi=\psi_{0}(t) \sin \alpha x \sin \pi z, \quad \theta=\theta_{0}(t) \cos \alpha x \sin \pi z \tag{2.10}
\end{equation*}
$$

The amplitude $\theta_{0}(\mathrm{t})$ was obtained from Eq. (1.5) with the aid of the series (1.6). The coefficients $c_{2 n+1}(\mathrm{n}=0, \pm 1, \pm 2, \ldots)$ were determined from the formulas

$$
c_{1}=1, \quad c_{2 n+1}=\rho_{1} \rho_{2} \ldots \rho_{n} \quad(n>0), \quad c_{-2 n-1}=\bar{c}_{2 n+1}
$$

(the bar denotes complex conjugation).
The amplitude $\theta_{0}(t)$ is now determined from the second equation of the system (1.3). The solutions of the conjugate system are obtained analogously.

The inhomogeneous system (2.5) is in this case

$$
\begin{gather*}
\frac{1}{\sqrt{p}} \frac{\partial}{\partial t} \Delta \psi_{1}-\Delta \Delta \psi_{1}=R_{*}(1+\eta \sin \omega t) \frac{\partial \theta_{1}}{\partial x} \tag{2.11}\\
\sqrt{\bar{p}} \frac{\partial \theta_{1}}{\partial t}-\Delta \theta_{1}=R_{*} \frac{\partial \psi_{1}}{\partial x}-\frac{\pi \alpha}{2} \psi_{0}(t) \theta_{0}(t) \sin 2 \pi z
\end{gather*}
$$

We seek the solution of the system (2.11) in the form

$$
\begin{equation*}
w_{1}=\varphi_{1}(t) \sin 2 \pi z \tag{2.12}
\end{equation*}
$$

The vector function $\varphi_{1}(\mathrm{t})=\left(\psi_{1}(\mathrm{t}), \theta_{1}(\mathrm{t})\right)$ which is periodic with period 2 T is obtained from the equations

$$
\begin{equation*}
\frac{1}{\sqrt{p}} \psi_{1}^{\prime}+4 \pi^{2} \psi_{1}=0, \quad \sqrt{p} \theta_{1}^{\prime}+4 \pi^{2} \dot{\theta}_{1}=-\frac{\pi \alpha}{2} \psi_{0} \theta_{0} \tag{2.13}
\end{equation*}
$$

In this case $\psi_{1}=0$, and θ_{1} is easily determined from the known $\psi_{0}(t)$ and $\theta_{0}(\mathrm{t})$.
The calculations have shown that $\zeta>0$ and $\gamma^{2}>0$ for all values of ω.
Thus, at small $\mathrm{Ra}-\mathrm{Ra}_{*}>0$ there exists one stable secondary flow (apart from a shift with respect to x , which is 2 T -periodic in time.

We note that, in the case of T-periodic solutions, unstable subcritical regimes set-in in a wide range of frequencies ω. Calculations have shown (see Fig. 2a) that in this frequency range the 2 T -periodic regimes correspond to smaller critical values of the Rayleigh number, and on going through these regimes there arise stable 2 T -periodic secondary flows.

LITERATURE CITED

1. G. S. Markman and V. I. Yudovich, "Numerical investigation of the onset of convection In a liquid layer under the influence of time-periodic external forces," Izv. Akad. Nauk SSSR, Mekhan. Zhidk. i Gaza, No. 3 (1972).
2. L. D. Meshalkin and Ya. G. Sinai, "Investigation of stability of stationary solution of one system of equations for planar motion of an incompressible viscous liquid," Prikl. Mat. Mekh., 25, No. 6 (1961).
3. V. I. Yudovich, "Example of creation of a secondary stationary or periodic flow upon loss of stabllity of laminar flow of a viscous incompressible liquid," Prikl. Mat. Mekh., 29, No. 3 (1965).
4. G. Z. Gershuni, E. M. Zhukhovitskii, and Yu. S. Yurkov, "Convective stability in the presence of a periodically varying parameter," Prikl. Mat. Mekh., 34, No. 3 (1970).
5. G. S. Markman, "Stability of equillbrium of a liquid acted upon by vibrational forces and a timeperiodic temperature gradient," in: Mathematical Analysis and Its Applications [in Russian], Izd. Rostovsk. Univ. (1970), Vol. 2.
6. M. M. Vainberg and V. Ya. Trenogin, "The methods of Lyapunov and Schmidt in the theory of nonlinear equations and their subsequent development," Usp. Matem. Nauk, 17, No. 2 (1962).
7. V. I. Yudovich, "Example of loss of stability and production of a secondary flow of liquid in a closed vessel," Matem. Sb., 74, No. 4 (1967).
8. V. I. Yudovich, "Stability of convective flows," Prikl. Mat. Mekh., 31, No. 2 (1967).
9. V. I. Yudovich, "Stability of stimulated oscillations of a liquid," Dokl. Akad. Nauk SSSR, 195, No. 2 (1970).

[^0]: Rostov-on-Don. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskol Fizlki, No. 6, pp. 6570, November-December, 1972. Original article submitted April 26, 1972.

[^1]: © 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

[^2]: *The same equation is obtained in an investigation of the convection in a constant gravitational field, if the temperature gradient is $\nabla \theta_{0}=a(1+\eta \sin \omega t)$ [4].

